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Executive summary

Hepatocellular Carcinoma (HCC) is currently the second leading cause of cancer-related death
in the world. It is recognised that over 90% of diagnosed HCC are linked to cirrhosis. Several
factors has been identified as damaging the liver and causing cirrhosis. This report will aim to
explain the different risk factors associated with five different pre-conditional diseases.

In the first part of the report, we started by assessing the impact of gender and the differ-
ent aetiologies on the incidence of HCC using a multivariate Cox regression model. We found
that female patients had better survival outcome than males and that for both male and female,
poorer survival outcome arises in patients with Hepatitis C and NAFLD followed by ALD. Ad-
ditionally, this project proposes a model to estimate the survival probabilities of a patient after
each new measurement taken. The model uses a joint modelling approach which combine two
sub-models a longitudinal model and a survival model. The longitudinal model constructs a
longitudinal profile for each patient whereas the survival model evaluates hazard ratio for a set
of predictors. The goal is then to assess the degree of association between the biomarker’s trend
and event time. Our results indicated a strong association between the biomarker true value
(and its rate of change) with the risk of HCC diagnosis. We found that an increase in the rate
of change of one unit in log(AFP) increases the risk of HCC by 29%.

Several additional steps could be undertaken to improve further the model such as combin-
ing additional biomarker measurements, including left-censored data and missing values that
have been removed.

To conclude, we recommend monitoring closely patients aged equal to or above the median
age of the cohort and suffering from ALD, NAFLD or hepatitis C.
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1 Introduction

1.1 Overview

Out of the five most frequently diagnosed cancer, liver cancer is the second leading cause of
cancer-related death worldwide [1]. In the UK alone, around 5700 people are diagnosed each
year. Although considered rare, Hepatocellular Carcinoma (HCC), which is the main cause
of primary liver cancer, is predicted to continue to be a major issue in the future. The most
important risk factor for HCC diagnosis is cirrhosis of the liver. Cirrhosis arises as a result of
long-lasting damage cause to the liver due to the building up of scar tissue. Several factors have
been identified of being the main cause behind cirrhosis, including viral hepatitis B and C (HepB
and HepC), excessive alcohol consumption leading to alcoholic liver disease (ALD), non-alcoholic
fatty liver disease (NAFLD) due to obesity, unhealthy diet and unbalanced lifestyle behaviours.
Other factors causing cirrhosis as well are autoimmune diseases such as haemochromatosis and
primary biliary cirrhosis.

The rate at which cirrhotic liver progresses to HCC is of particular importance. It is believed
that HCC develops at a rate of around 2 − 3% per year and this rate may vary depending
on the risk factors of cirrhosis listed above [2]. As of today, HCC surveillance programs rely
mainly on two methods to detect potential sign of malignant tumours in the liver, a biomarker
α-fetoprotein (AFP) and ultrasound (US) testing. Even if AFP testing remains the most widely
used biomarker in HCC surveillance, there is disagreement about which threshold value of the
biomarker to adopt. Moreover, the sensitivity of AFP as a diagnostic tool is lower than for US
since AFP values can oscillate and in one third of the case will not be significantly elevated [3].
Since early detection can help reduce HCC mortality significantly, it is crucial that improve-
ments in HCC surveillance programs need to be made. Indeed, early stage detection of HCC
can almost exclusively be detected through surveillance program [4].

Our goal in this report will be to find a better strategy of the use of serial biomarker for
early detection of HCC and identify strata of patient that are more vulnerable to HCC devel-
opment. From previous studies, we already know that HCC diagnosis is more prevalent in men
than in women but we do not know if this gender bias stays the same for patients with different
aetiologies. We will therefore investigate the different risk factors in different populations by
disease aetiology using standard statistical techniques.

Ultimately, the project will aim to present a valid framework in assessing patient’s risk of HCC
diagnosis using personalised screening test. As longitudinal measurements of AFP are being
collected, the framework developed will aim at constantly update the prediction of the patient’s
survival probabilities. This could potentially lead to an improvement of early detection of HCC
diagnosis which could also lead to a reduction in the cost of more invasive tests such as MRI
and biopsy by decreasing the number of false positive rate.

1.2 Data description

Two separate data sets corresponding to a cohort of HCC-free patients (around 1509) and a sec-
ond cohort with HCC-diagnosed patients (around 300) were both been monitored in the Lothian
region,South East of Scotland. The two data sets contain information about the gender, age,
aetiologies, the time to event of HCC diagnosis and the status (HCC diagnosed or HCC-free) for
each patient. Table 1 and table 2 displays some exploratory analysis on the patients. The HCC-
free screening cohort consisted of 1509 patients and after removing missing values and selecting
patients with at least 2 AFP measurements, the screening cohort consisted of 1506 HCC-free
patients. Some patients had multiple pre-conditional diseases at the start of the study. We cre-
ated five categories of aetiologies which were then coded as binary output. The five categories
are shown in table 1.Moreover, we added a ”status” variable for each patient in the data set
to distinguish the person experiencing an event (coded as 1) with those who did not and were
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therefore treated as right-censored data (coded as 0)

For the second data set, the HCC screening cohort, figure 1 illustrates the pattern of miss-
ingness in the data. The data set consisted initially of 366 HCC-diagnosed patients. Almost a
quarter of the data was removed due to missing data for the sex variable (240). We proceeded
further by removing, patients with missing values in their AFP measurements as well as patient
with left-censored data and patients with recording errors (illogical date of diagnosis). We ended
up with a total of 211 HCC-diagnosed patients with complete information. Combined, the two
data sets comprised in total 1717 patients and 15, 066 repeated measurements.

Figure 1: Missing data pattern in the HCC screening cohort.
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Table 1: Exploratory analysis of the Screening cohort

Aetiologies Number of patient Male % Mean log AFP (sd)

1 ALL 1, 509 57% 0.584 (0.295)
2 ALD 450 60% 0.629 (0.259)
3 NAFLD 178 58.4% 0.6 (0.272)
4 HepC 403 55.3% 0.576 (0.321)
5 HepB 162 43.8% 0.527 (0.263)
6 Other 453 35.8% 0.518 (0.341)

Table 2: Exploratory analysis of the HCC cohort

Aetiologies Number of patient Male % Mean log.AFP (sd)

1 ALL 240 75% 1.118 (0.860)
2 ALD 103 84.5% 1.065 (0.791)
3 NAFLD 61 82% 1.106 (1.028)
4 HepC 7 76.9% 0.984 (0.450)
5 HepB 65 85.7% 1.293 (0.947)
6 Other 61 63.9% 1.374 (0.980)

2 Literature Review

2.1 Background

The primary aim of this project is to analyse in detail the time until event or survival time for
different group and subgroup of the full data set comprising all HCC-free and HCC-diagnosed
patients. In survival analysis, the survival time is treated as the response variable which can
depend on the combination of other predictors. Survival analysis plays an important role in clin-
ical studies and an important class of relative risk models has been developed. In this project,
we are interested in understanding how the risk of HCC development varies in function of the
pre-conditional disease of the patient.

We will compare different survival function estimators and determine the optimal approach
to adopt by taking into consideration the limitations of these models as well as their advantages
and disadvantages. The most well-known model is the Cox proportional hazards model [5] which
is a semi-parametric model due to the fact that it does not make any assumption concerning
the distribution of the survival times. The model consist of exploring the relationship between
the survival time of a patient and the available information we have on this patient (e.g sex,
age disease,biomarker level and so on). Once correctly fitted, we can estimate the risk of HCC
development based solely one the explanatory variables.

2.2 Multivariate Cox Model

First we need to define two important functions arising in survival analysis, namely the sur-
vival and the hazard function. The survival function is simply expressing the probability of an
individual surviving up to a certain time t.

S(t) = Pr[T ∗ > t] = e−H(t)
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where T ∗ denotes the random variable of survival time (in our case the time to diagnosis of
HCC) and H(t) the hazard function. The hazard function represents the expected number of
event to be observed up to time t which is the sum or accumulated risk up to time t.

H(t) =

∫ t

0
h(s)ds (2.1)

h(t) = lim
dt→0

Pr[t ≤ T ∗ < t+ dt | T ∗ ≥ t]
dt

, t > 0 (2.2)

The Cox model is a solid procedure to model the relationship of covariates to an event (failure
time or censoring). It assumes a multiplicative effect of covariates on the hazard and specifies
the following hazard for an individual i:

hi(t | wi) = lim
dt→0

Pr[t ≤ T ∗ < t+ dt | T ∗ ≥ t, wi]
dt

(2.3)

= h0(t)e
Twi (2.4)

The model can then be decomposed in two parts, a parametric part where wTi = (wi1, . . . , wip)
represents the vector of covariates, γ the vector of regression coefficient and a non-parametric
part where h0(t) is an unspecified baseline hazard function (the hazard function when all covari-
ates equal zero). Analogous to logistic regression, the hazard ratio for one unit change in wij
at any time t is simply eγj . The estimation of our parameters γ in a Cox model are found by
partial maximum likelihood (PML). Iterative methods such as Newton-Raphson are then used
to solve the PML and obtain the coefficients γ. However, risk regression models make several
assumptions:

• For any two covariates k and l the hazard ratio is constant over time. This is known as
the proportional hazards assumption.

h0(t | wk)
h0(t | wl)

=
h0(t)e

wkβ

h0(t)ewl
= ewk−wlβ

• The distribution of the survival time T ∗i are not specified in the baseline hazard function

• The Cox model allow us to take into account all patients even if they were not monitored
during the same period or if we did not observe any event (HCC diagnosis) during follow-up
(can be used with censoring effect).

2.3 Joint Modelling framework

In the previous two models, we did not take into consideration any time-dependent covariates
such as the AFP measures or the age of the patient at each follow-up time. It would,however,
be also of interest to investigate the effect of these time-dependent covariates on the associated
risk of developing HCC.

One possible method would be to extend the Cox model seen previously so that it could handle
time-dependent covariates [6]. The issue is that these models can only deal with exogenous co-
variate which have the characteristics that the trend of the covariate is not affected by the failure
time which is not the case unfortunately for the AFP biomarker. The biomarker is said to be
an endogenous variable if its trend is not predictable (due to biological variation and measure-
ment errors). In this case, we cannot define a survival function conditional on the biomarker’s
measurements [7].

To handle time-dependent endogenous covariate an alternative approach known as joint mod-
elling has been proposed. The aim of this framework is to be able to take into account repeated
measurements of the biomarker and to measure any association between the longitudinal data
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and the hazard of an event [8].

The joint model can be thought as a two step process. First a longitudinal sub-model, which
consists of a linear mixed effect model, is fitted to describe the evolution of the biomarker over
time for each patient. Then a survival sub-model,consisting of a simple Cox model, is per-
formed on the wide data set. The joint model evaluates then the joint distribution of the two
sub-models. Thus, we first need to define an adequate mixed effect model that will allow us to
estimate the true value of the biomarker and reconstruct Mi(t), its longitudinal history. The
model has the following general form:

yi(t) = mi(t) + εi(t),

mi(t) = xTi (t)β + zTi bi,

bi ∼ N(0, D), εi(t) ∼ N(0, σ2),

(2.5)

where

• xi(t) and β are the Fixed-effects part of the model

• zi(t) and bi are the Random-effects part of the model

Essentially,the mixed effect model allows us to model the response variable yi(t), the ”contami-
nated” longitudinal response in each subject where each subject has his/her own mean response
profile over time. Each individual in this model will have an individual intercept and slope.

The fixed effect regression coefficients β = (β1, . . . , βp) are interpreted exactly as in a linear
regression model. The random effect bi on the other hand, explains how a subset of the regres-
sion parameters for an individual i deviates from those in the population. The random effects
follow a multivariate normal distribution with mean zero and covariance matrix D. Several
advantages result from modelling the response variable using mixed models.

1. we obtain individual response trajectories

2. it can accommodate the fact that patients have different number of repeated measurements

Next, we need to define a relative risk model for an individual i as follow:

hi(t |Mi(t), wi) = h0(t)e
γTwi+αmi(t)

Si(t |Mi(t), γi) = Pr[T ∗i > t |Mi(t), γi]

= exp

(
−
∫ t

0
h0(s)e

γTwi+αmi(s) ds

)
where

• mi(t) designates the true and observed value of the time-dependent covariate

• Mi(t) is the longitudinal measurement history of the biomarker such that
Mi(t) = {mi(s), 0 ≤ s < t}

• α quantifies the strength of the relationship between AFP values an the risk for an event

• wi ,as before, represents the different predictors at baseline

More specifically where eγi represented the increase of hazard ratio for one unit change in γi,
similarly here, eα represents the increase in risk for an event for one unit increase in the true
value of AFP level at same time [9]. Hence, α as formulated above, determines the strength
of the association between the level of AFP at a particular time t and the risk of an event at
that same time. This concept can however be extended by re-parameterising the relationship
between the longitudinal and survival sub-model. A more complex joint model can then consider
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not only the AFP level of the biomarker at time t, but also the rate of change of the trajectory
at that same time.The survival sub-model becomes then:

hi(t) = h0(t)e
γTwi+α1mi(t)+α2mi(t)

′
where (2.6)

m
′
i =

dmi(t)

dt
=

d

dt
{xi(t)β + zTi (t)bi} (2.7)

In this setup, the model captures not only the difference between two patients with similar AFP
levels but also different rate of change at a certain time point. α2 will therefore quantify the
association between the slope of the marker and the risk for an event.

Finally, the two processes are then combined to form a joint model which has the following
general distribution [10]:

p(Ti, δi, yi) =

∫
p(yi | bi){h(Ti | bi)δiS(Ti | bi)}p(bi) dbi

where S(.) denotes the survival function and p(.) the density function. The estimation procedure
can follow two approaches, a frequentist and a Bayesian approach.

In the frequentist approach,solving the density and survival function first require the use of
numerical integration algorithm (e.g Monte Carlo,Gaussian quadrature). The parameter esti-
mates are then computed via Maximum likelihood and maximisation of the log-likelihood is
evaluated using either the EM algorithm, Newton-Raphson or by a combination of both.

The estimation of the joint model’s parameter under the Bayesian approach is based on Markov
Chain Monte Carlo(MCMC) algorithm. Following [11] the main assumptions to derive the
posterior distribution is that given the random effects bi, both the longitudinal and survival
sub-model are independent such that:

p(yi, Ti, δi | bi,θ) = p(yi | bi,θ)p(Ti, δi | bi,θ), (2.8)

p(yi | bi,θ) =
∏
l

p(yil | bi,θ) (2.9)

The second equation assumes that the longitudinal responses between subject are independent.
Thus, the posterior distribution is then given by:

p(θ, b) ∝
n∏
i=1

ni∏
l=1

p(yi | bi,θ)p(Ti, δi | bi,θ)p(bi | θ)p(θ) (2.10)

where p(yi | bi,θ) is a member of the exponential family and p(Ti, δi | bi,θ) represent the
survival part in the joint model. Most parameters can then be updated using Gibbs sampling.
However in the case where 2.10 has no conditional posterior closed-form, a Metroplolis -Hasting
algorithm is used.

3 Results

3.1 MLE estimates of the Cox model

This section illustrates the procedure taken to fit the simple Cox model, a Cox model without
time-dependent variable. We will first proceed by fitting multiple univariate relative risk models
in order to find the most significant covariates to include in the final survival model. We then
use our final adjusted model to run some exploratory analysis such as the estimated distribution
of survival time of all patients and predicted survival curves for the different aetiologies of the
patients.
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The following analysis was performed using the R package ”survival” [12]. The data repre-
sented a cohort of 1717 patients with attributes consisting of categorical variables only. For
each patients the following attributes were collected: Age at the first sample (categorised into
two subsets: ≤ median age and > median age), Sex (0 for male and 1 for female, five binary
covariates for the presence or not of a pre-conditional disease ALD,NAFLD,Hepatitis B, Hepati-
tis C and Other. Moreover the status (HCC diagnosed or not) and the time to event (survival
time) were recorded as well. Out of the 1717 patients, 211 developed HCC so the occurrence of
the event was about 12.3%. The median follow up time of the HCC study was 1645 days hence
50% of the patients would have been observed for 1645 days, had there been no events.

3.1.1 Univariate Cox regression models

Table 3 shows the output from seven different univariate Cox regressions.The summary provides
the estimates of the regression coefficients and also their statistical significance based on the
Wald statistics value ( z = β

se(β ). The variable Sex, Age,ALD, NAFLD and HepB have all
statistically significant coefficients.

We can note that a positive coefficient implies that the risk of developing HCC is higher for
patients with greater values. For factor variables (here coded 1 or 0), a negative values suggest
that the risk of event for the group coded 1 relative to the one coded 0 is lower. Hence, we can
deduce from the output that females have a lower risk of developing HCC than males. Similarly,
older patient have a lower survival rates than younger ones.

The table also shows the hazard ratio which is simply the exponential of the beta coefficient.
This gives the effect size of the covariate. For example, patient with ALD have a hazard ratio
of around 2 which suggest that at any particular time, twice as many patient having ALD as
a pre-conditional disease are experiencing an event of developing HCC compared to those who
not not have ALD. Similarly, female patient the hazard is reduced by a factor of 0.51 or 49%.

Table 3

beta Hazard Ratio (95% CI) Wald test p-value

Sex -0.68 0.51 (0.37-0.69) 19 1.4e-05
Age 1.6 5.2 (3.7-7.1) 99 0
ALD 0.73 2.1 (1.6-2.7) 27 2e-07

NAFLD 1.1 3.2 (2.3-4.4) 47 7.7e-12
HepB -1.3 0.27 (0.12-0.6) 10 0.0015
HepC -0.18 0.83 (0.62-1.1) 1.4 0.24

3.1.2 Multivariate Cox regression model

In order to understand how the covariates jointly impact the risk of HCC, we progress to a mul-
tivariate Cox regression model. Although the variable HepC was not statistically significant, we
still want to compare the predicted survival curves for the different aetiologies and will therefore
include it in the model.

Figure 2 help us visualising the summary of the multivariate Cox model. There is clear ev-
idence from the p-value that all covariates except HepB are statistically significant.
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We can observe some dramatic change for the new adjusted model. An increase in age is
still associated with an increase in risk. The relationship between Sex and HCC diagnosis is
almost unaltered after adjustment for Age and all the pre-conditional disease (Hazard ratio CI
almost similar before and after adjustment). On the other hand, after adjustment the hazard
ratio for Age, ALD, Other, HepB and HepC considerably increased. Since covariates act as a
multiplicative effect in a Cox model and knowing that several patient contracted a combination
of aetiologies at follow-up entry, the hazard ratio was very likely to increase when adjusting for
additional factors. Now that the adjusted Cox model is fitted to the data set, we can visualise

Figure 2: Forestplot of the adjusted Cox proportional hazards model showing the hazard ratio
derived from the model for all covariates

the distribution of survival times for patient with different aetiologies. Figure 3 illustrates the
predicted survival proportion for the five different pre-conditional disease at any given point in
time for males and females. From the figure, we can see that the survival curve for females are

Figure 3: Predicted survival curves for several different aetiologies. Top panel is female patient
and bottom panel is male patient

above the one for males since their survival outcome is better relative to the males. In both
group, the poorer survival outcome arises for patients with Hepatitis C and NAFLD followed
by ALD.
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3.2 MCMC estimates of the joint model

The previous section dealt with categorical and continuous variable that were not time-dependent.
We did not use the repeated measurement of the biomarker levels that was recorded for each
patient. As previously stated, the extended Cox model offers a way to deal with such covariate
but the assumptions made by this type of model cannot be satisfied for endogenous variables.
Joint models [13] offers an alternative framework to work with longitudinal biomarker values by
evaluating jointly a survival sub-model with a longitudinal sub-model. To do that, the biomarker
measurements were applied a log-transformation so that the AFP levels would be normally dis-
tributed [14]. We restricted our data set for patients with at least two sample measurements.
Figure 4 illustrates the density shape of the patient’s AFP measurements.

(a) Distribution of all AFP levels for the 1717 pa-
tients.

(b) Distribution of the AFP levels within each pa-
tient for patient with at least 15 measurements

Figure 4: Distribution of AFP measures

3.2.1 The linear mixed-effects model

The longitudinal sub-model was constructed using a mixed-effects model which can be simplified
to a simple linear mixed-effects model since we are assuming our longitudinal biomarker level
to be normally distributed. Thus, the following model was fitted using our vector of covariates
xT
i = (xi1, . . . , xi6) and β = (β0, . . . , β7):

yi(t) = mi(t) + εi(t),

mi(t) = (β0 + bi0) + (β1 + bi1)Bn(t, 3) + β2 Sex

+ β3Agei + β4ALDi + β5NAFLDi

+ β6HepBi + β7HepCi,

bi ∼ N(0, D), εi(t) ∼ N(0, σ2),

(3.1)

where Bn(t, 3) is a cubic spline, used here to correctly capture Mi(t), especially for subjects with
non-linear AFP trajectories (Brown et al,2005)[15] as illustrated in figure 5.

Formulated in that way, it is possible to estimate the parameters that describe how the AFP
responses change in the population and it is also possible to predict how individual patient
response trajectories change over time. There is no need to specify the specific start and end of
the study since the time to event of HCC diagnosis (in days) was, although given, recomputed
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for each patient.

Indeed, the ”JMbayes” package in R [16] required that the accumulated observation times (ac-
cumulated time elapsed between each sample measurement) be smaller than the survival time.
The package logically implied that no further measurements could be taken after a patient ’s
”death” (here HCC diagnosis). Hence, every measurements for each patient taken after the
date of diagnosis were removed. Moreover,patients with left-censored data (patients diagnosed
with HCC before entering the study) were also removed from the dataset for simplicity (certain
techniques can incorporate left-censored data). The estimates for the linear mixed-effects model

Figure 5: Subject-specific longitudinal log(AFP) profiles for three patients from the data set

were derived by maximum likelihood principle, more specifically by Restricted Maximum likeli-
hood (Horvill, 1974) [17].

3.2.2 The time-to-event process

For the survival sub-model, we use the result from section 3.1 and fit our Cox survival model in
the same way, we have:

hi(t |Mi(t), wi) = h0(t)e
γTwi+α1mi(t)+α2

dmi(t)

dt where (3.2)

γTwi = γ1 + γ2Agei + γ3ALDi + γ4NAFLDi (3.3)

+ γ5HepBi + γ6HepCi (3.4)

Where h0(t) denotes the baseline risk function. In our case h0(t) will correspond to the hazard
function of a patient that has γTwi = 0 which correspond to a male patient that entered the
study with a pre-conditional disease classified as ”Other” as explained in section 3.

While in the multivariate Cox model we had the advantage of not having to specified the
baseline hazard function to avoid misspecifying the distribution of T ∗i , this can unfortunately
not be done in the joint modelling framework. This will result in an sever underestimation of
the parameter’s standard errors [18]. We can estimate h0(t) using a estimated risk function
computed by non-parametric method so that no assumptions is made on the distribution of the
survival times. According to the literature cubic splines approximation are efficient methods
bringing increased flexibility in the estimation of the baseline risk function [19]. The survival
sub-model was parameterised so that the time-dependent slopes of the marker would be also
taken into consideration.
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The estimation of the joint model’s parameter from equation 2.10 was done using the ”JM-
bayes” package which uses a Bayesian approach, proceeding with a Markov Chain Monte Carlo
(MCMC) algorithm.More specifically, the MCMC algorithm samples from the posterior condi-
tional parameters and the random effects via a random walk Metropolis-Hastings algorithm [16].
The joint model was run using a single chain and without initial values.The chain was run for
20000 iterations with a burn-in of 3000 iterations and a thinning of 10. The acceptance rate for
the β coefficients (coefficients from the longitudinal sub model) was of 44.5% whereas for the
γ coefficient of the event process was of 22.93%. The posterior means summary obtained from
the MCMC algorithm are shown in table 4 and 5. Figure 6 displayed the density plots of the
MCMC chain as well as the convergence of the chain (traceplots).

The posterior means for the survival sub-model are displayed in table 5 and express the log
hazard ratio. A negative log hazard ratio is associated with better prognosis. From the table
we can then deduce that females have a better prognosis than male which is in accordance with
most studies. Out of the six covariates describing the patients characteristics, only the sex vari-
able is negative. From the different aetiologies present in the patients at the start of the study,
ALD has the highest value closely followed by Hepatitis C. Hence patient with ALD more than
double the hazard compared to baseline (Patient with aetiology categorised as ”Other). We can
also observed that the intercept of the AFP trajectory (Assoct in table 5) is highly associated
with the risk for HCC diagnosis (p-value << 0.05). For patient having the same level of AFP,
the log hazard ratio for a unit increase in the current intercept of the AFP trajectory is 1.93.
Similarly, the rate of change of the AFP levels (AssocE in table 5) is also strongly associated
with the failure time (p-value = 0.009).

Table 4: Coefficient estimates for the longitudinal sub-model

Value Std.Err Std.Dev 2.5% 97.5% P

(Intercept) 0.210 0.002 0.022 0.167 0.250 0
ns(Obstime, 3)1 −0.052 0.001 0.019 −0.090 −0.015 0.007
ns(Obstime, 3)2 −0.135 0.001 0.020 −0.174 −0.097 0
ns(Obstime, 3)3 −0.066 0.002 0.024 −0.114 −0.019 0.007

Sex 0.007 0.001 0.020 −0.033 0.047 0.685
Age 0.007 0.00004 0.0002 0.007 0.008 0
ALD 0.095 0.001 0.024 0.050 0.142 0

NAFLD 0.021 0.001 0.030 −0.039 0.080 0.458
HepB −0.014 0.001 0.034 −0.080 0.052 0.684
HepC 0.098 0.001 0.017 0.064 0.130 0

3.2.3 Dynamic predictions using the joint model

From the Bayesian estimates, the joint model can be used to make dynamic predictions for
future biomarker levels for each individual patient in the study. Moreover, individual survival
probabilities can be computed too. Figure 7 and 8 illustrates two predictions made on two
different patients based on their AFP measurements and characteristics. Patient number 407
was in the screening cohort and did not developed HCC. We can see that the patient’s AFP
levels were decreasing over time hence we can see that the patient ’s chance of survival increased
by about 10% on a five year and a half timescale. On the other hand, for the second patient
(patient number ”L170”) who was in the HCC screening cohort and did develop HCC, his/her
AFP levels dramatically increased over time hence lowering his chance of not getting HCC. By
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Table 5: Coefficient estimates for the Cox survival sub-model

Value Std.Err Std.Dev 2.5% 97.5% P

Sex −0.837 0.013 0.183 −1.188 −0.476 0
Age 0.095 0.002 0.007 0.080 0.106 0
ALD 0.789 0.011 0.159 0.494 1.117 0

NAFLD 0.533 0.013 0.198 0.136 0.922 0.001
HepB 0.298 0.032 0.446 −0.603 1.126 0.510
HepC 0.771 0.016 0.192 0.382 1.154 0
Assoct 1.930 0.005 0.094 1.747 2.111 0

AssoctE 0.252 0.079 3.102 −5.954 6.225 0.009
tauBs 66.612 8.017 71.051 3.522 259.697

Figure 6: Density plots and traceplots of the MCMC chain for each parameter of the survival
sub-model.
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the end of the first year, his/her chance of ”survival” were already close to 0.

Figure 7: Dynamic predictions of survival probabilities for patient in the screening cohort who
did not develop HCC. The vertical dot line represent the time point of the last AFP measurement.
On the left side of the vertical line is represented the longitudinal trajectories. On the right,
the predicted survival curve with the red line representing the mean survival rate with a 95%
pointwise confidence interval.

Figure 8: Dynamic predictions of survival probabilities for patient in the HCC screening cohort
who developed HCC. The vertical dot line represent the time point of the last AFP measurement.
On the left side of the vertical line is represented the longitudinal trajectories. On the right,
the predicted survival curve with the red line representing the mean survival rate with a 95%
pointwise confidence interval.
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4 Discussion and limitations

4.1 Discussion

By using the data from a well-defined cohort of ongoing HCC-free patients undergoing regular
HCC surveillance and a cohort of patients diagnosed with HCC, we observed differences in the
risk of HCC development in populations with different causes of liver disease. In this project,
we illustrated the different survival times between male and female who entered the study with
a specific pre-conditional disease.

We initially postulated a multivariate Cox model without including the AFP measures. The
results suggested that both age and sex were statistically significant variables that were affecting
the hazard ratio of HCC diagnosis. The results also suggested that among the five aetiologies
directly linked with liver cancer,patients with ALD and NAFLD were associated with worst
prognosis than those with hepatitis B,C or other forms of disease. Figure 3 showed a significant
drop of the survival probabilities for male patient diagnosed with ALD and NAFLD compared
to female patients within the same subgroup. Hence, our results indicate that the male/female
gender bias in HCC development is stronger for patients with ALD and NAFLD rather than
patients with viral infections or autoimmune diseases.

In our second approach, we used a joint model framework to extend the multivariate Cox model
and therefore taking into consideration the longitudinal measurements of the AFP biomarker.
With this method we jointly evaluated a survival and a linear mixed-effects model and asso-
ciated the biomarker true value and rate of change at a certain point in time with the risk of
developing HCC. The results were in accordance with the first model and coefficients for the
survival sub-model were similar. The joint model accentuated the better prognosis for female
patients compared to the one for male and and reduced the hazard of a HCC diagnosis from
2.75 to 1.7 fold for patient with NAFLD. We showed the current level of the AFP measure and
its rate of change was strongly associated with the risk of cancer diagnosis. The results allowed
us to provide individualised predictions for the survival and longitudinal outcomes as illustrated
in figure 7 and 8.

4.2 Limitations

Throughout this project, we did not emphasize on the predictive performance of any fitted
model, nor did we analytically evaluate their prospective accuracy. The reason is that we as-
sume a non-informative censoring mechanism when evaluating the survival models.Namely, we
hypothesize the fact that a patient withdrawing from the study for reasons completely unrelated
to his/her prognosis. This can be seen as a ”missing completely at random” mechanism (MCAR)
that we found in longitudinal studies where statistical methods have been develop to efficiently
deal with them. However, in our case, we considered every patient in the cohort study who did
not develop HCC as right censored data and assumed that they simply did not experience an
event or randomly left the study. The problem is, that most patients who did leave the study,
did so because they did not develop liver cancer in the future. Hence, the probability of a
subject being censored depends on the failure process and we have an informative censoring
mechanism.

Therefore, the main idea of the project was to perform mainly exploratory analysis using the
HCC and HCC-free patient’s data and to suggest an adequate methodology to adopt should the
data be taken in a randomised trial or in another set up making sure that the censoring process
is unrelated to the failure rates. Indeed, non-informative censoring mechanism produces highly
biased results and the estimates obtained in this study should not reflect the true risk of HCC
diagnosis. Similarly, the predicted survival probabilities serve here as an illustrative purpose.
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5 Conclusion

In this report we have described two different survival analysis approaches to estimate the sur-
vival probabilities of patients suffering from different pre-conditional diseases in the Lothian
region.

From our result, we have been able to identify the different risk factors associated with each
aetiologies. We showed that the gender and the age of a patient were statistically significant
predictors of the two survival models.

According to the multivariate Cox model, ALD,NAFLD and Hepatitis C suffering patients
were the one more at risk of developing HCC. The median survival time of these patient was
about nine years and a half for males while Hepatitis B suffering patients and patients with
autoimmune disease such as PBC and haemochromatosis, had a median survival time of around
thirteen years. This represents a four years difference that could be crucial for the treatment of
early stage liver cancer. Our results also shown that the gender bias in developing HCC is more
pronounced in ALD, NAFLD and Hepatitis C compared to the other aetiologies.

In addition, we proposed an alternative framework to assess the patient’s risk of developing
HCC. We derived a joint model that took into consideration the AFP levels of each patient
which can then predict the survival probabilities of the patient after each new measurement.
For further study, it would be interesting to use the joint model to select the optimal time point
to plan the next measurement. This could dramatically reduce the cost of unnecessary screening
tests and biopsy operations.

To conclude, we recommend monitoring closely patients aged equal to or above the median
age of the cohort and suffering from ALD, NAFLD or Hepatitis C. This could be done by using
our derived joint model that allow to constantly update the prediction of the patient’s survival
probabilities.
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R codes

1
2 ## Loading the libraries

3
4
5 rm(list = ls())

6 if (!require(tidyverse)) install.packages(’tidyverse ’); require(tidyverse)

7 if (!require(ggplot2)) install.packages(’ggplot2 ’); require(ggplot2)

8 if (!require(reshape2)) install.packages(’reshape2 ’); require(reshape2)

9 if (!require(gridExtra)) install.packages(’gridExtra ’); require(gridExtra)

10 if (!require(rjags)) install.packages(’rjags’); require(rjags)

11 if (!require(stargazer)) install.packages(’stargazer ’); require(stargazer)

12 if (!require(ggfortify)) install.packages(’ggfortify ’); require(ggfortify)

13 if (!require(ggmcmc)) install.packages(’ggmcmc ’); require(ggmcmc)

14 if (!require(metRology)) install.packages(’metRology ’); require(metRology)

15 if (!require(fBasics)) install.packages(’fBasics ’); require(fBasics)

16 if (!require(gridExtra)) install.packages(’gridExtra ’); require(gridExtra)

17 if (!require(xtable)) install.packages(’xtable ’); require(xtable)

18 if (!require(JM)) install.packages(’JM’); require(JM)

19 if (!require(JMbayes)) install.packages(’JMbayes ’); require(JMbayes)

20 if (!require(rstan)) install.packages(’rstan’); require(rstan)

21 if (!require(lme4)) install.packages(’lme4’); require(lme4)

22 if (!require(readxl)) install.packages(’readxl ’); require(readxl)

23 if (!require(lubridate)) install.packages(’lubridate ’); require(lubridate)

24 if (!require(readxl)) install.packages(’readxl ’); require(readxl)

25 if (!require(lubridate)) install.packages(’lubridate ’); require(lubridate)

26
27 ############################################################################

28 #-------------------------------------HCC in screening dataset ------------

29 ############################################################################

30 ############################################################################

31
32 # Load the HCC in screening dataset from computer

33 HCC.data <-read_excel("HCC_in_screening_clean.xlsx",sheet = "Sheet1",

34 col_types = c("text","numeric","date",

35 rep("numeric" ,8),"date","numeric","numeric"))

36
37 # reorder dataframe

38 HCC.data <- HCC.data[order(HCC.data$ID) ,]

39 ## cleaning the data

40 count.HCC <- HCC.data %>% group_by(ID) %>%

41 summarize(count=n())

42 #check ordering

43 stopifnot(count.HCC$ID== unique(HCC.data$ID))

44
45 #Impute values into long format

46 sex.HCC <- HCC.data %>% dplyr:: select(Sex)%>%

47 filter(Sex!="NA")

48 aetiology.HCC <- HCC.data %>%dplyr:: select(ALD:Other) %>%

49 filter_all(all_vars(.!=’NA’))

50 HCC.data$Sex <- rep(sex.HCC$Sex ,times=count.HCC$count)

51 for (i in 1:dim(aetiology.HCC)[2]){

52 HCC.data[,6+i] <- rep(pull(aetiology.HCC[,i]),

53 times=count.HCC$count)

54 }

55
56 # Add status (event)

57 HCC.data$Status <- rep(1,length(HCC.data$ID))

58
59 # Add observation time (time point for each measurements) per patient

60 Obstime <- list()

61 obstime.temp <- NULL

62 for (i in unique(HCC.data$ID)){

63 for (j in 1:count.HCC$count[count.HCC$ID==i]){

64 patient.dates <- HCC.data$"Sample_date"[HCC.data$ID==i]

65 init.date <- patient.dates [1]

66 obstime.temp[j] <- difftime(patient.dates[j],init.date ,units = "days")

67 }

68 Obstime [[i]] <- obstime.temp

69 obstime.temp <- NULL

70 }

71
72 HCC.data$Obstime <- unlist(Obstime)

73
74 # Recalculate time to event
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75 data.sample.temp <- HCC.data %>% group_by(ID) %>%

76 filter(row_number(ID) == 1)

77 date.sample <- ymd(as.character(data.sample.temp$Sample_date))

78 start.date <- date.sample[!is.na(date.sample)]

79 date.diagnosis <- ymd(as.character(HCC.data$Diagnosis))

80 end <- date.diagnosis[!is.na(date.diagnosis)]

81
82 time.to.event <- difftime(end ,start.date ,units="days")

83 HCC.data$TimeEvent <- rep(time.to.event ,times=count.HCC$count)

84
85 # Remove NAN

86 HCC.temp1 <- HCC.data%>% dplyr:: select(ID,Sex ,Age_sample ,Time ,

87 AFP ,ALD:Other ,

88 Status ,Obstime ,TimeEvent)%>%

89 filter_all(all_vars(.!=’NA’))

90
91 # rename column

92 colnames(HCC.temp1)[colnames(HCC.temp1)==’Age_sample ’]<- ’Age’

93 colnames(HCC.temp1)[colnames(HCC.temp1)==’HEPC’] <- ’HepC’

94
95 #remove left censored event

96 HCC.temp2 <- HCC.temp1%>%dplyr:: select(ID,Sex ,Age ,AFP ,Time ,

97 ALD:Other

98 ,Status ,Obstime ,

99 TimeEvent)%>%

100 filter_at(vars(TimeEvent), any_vars (.>0))

101
102 #Remove longitudinal measurements after event/diagnosis

103 HCC.temp3 <- HCC.temp2%>%dplyr:: select(ID,Sex ,Age ,Time ,

104 AFP ,ALD:Other

105 ,Status ,Obstime ,

106 TimeEvent)%>%

107 filter_at(vars(Time), any_vars (.<0))

108
109 # check that TimeEvent > Obstime

110 stopifnot(HCC.temp3$TimeEvent > HCC.temp3$Obstime)

111
112 indices <-which(HCC.temp3$TimeEvent < HCC.temp3$Obstime)

113 # remove

114 HCC.temp3 <- HCC.temp3[-indices ,]

115
116 HCC.data <- HCC.temp3 %>% dplyr:: select(ID,Sex ,Age ,AFP ,

117 ALD:Other

118 ,Status ,Obstime ,

119 TimeEvent)

120
121 ###############################################################

122 #--------------- Cohort in screening dataset ------------------

123 ###############################################################

124 ###############################################################

125
126 df.JM <- read_excel("Screening_cohort_clean.xlsx",sheet = 1,

127 col_types = c("text",rep("numeric" ,13)))

128
129 # set time at sample

130 df.JM$Obstime <- df.JM$Sample_time -df.JM$Time

131
132 # Add censoring status

133 df.JM$Status <- rep(0,length(df.JM$ID))

134
135 # Select important covariates

136 data.JM.cohort <- df.JM %>% dplyr:: select(ID:Age ,

137 Time ,ALD:Other ,AFP ,Obstime ,Status)

138
139 # Filter patients with at least two measurements

140 df.JM.temp <- data.JM.cohort %>% group_by(ID) %>%

141 filter(n() >= 2)

142
143 #Change sign of Time to event

144 df.JM.temp$Time <- as.numeric(-df.JM.temp$Time)

145
146 # rename column

147 colnames(df.JM.temp)[colnames(df.JM.temp)==’Time’]<-’TimeEvent ’

148
149
150 #Filter NA values

21



151 df.JM.temp <- df.JM.temp %>% dplyr :: select(ID:Age ,

152 TimeEvent ,ALD:Other ,

153 AFP ,Obstime ,Status) %>%

154 filter_all(all_vars(.!=’NA’))

155
156 #remove left censored event

157 df.JM.temp2 <- df.JM.temp %>% dplyr :: select(ID:Age ,TimeEvent ,

158 ALD:Other ,AFP ,Obstime ,

159 Status)%>%

160 filter_at(vars(TimeEvent), any_vars (.>0))

161
162 # check that Time >= Obstime

163 stopifnot(df.JM.temp2$TimeEvent >= df.JM.temp2$Obstime)

164
165 # Remove inconsitencies in data reporting

166 JM.cohort <- df.JM.temp2 %>% dplyr :: select(ID:Age ,

167 TimeEvent ,ALD:Other ,

168 AFP ,Obstime ,Status)%>%

169 filter_at(vars(Obstime), any_vars (.>=0))

170
171 #------------------Joining the two datasets ---------------

172
173 full.data.long <- bind_rows(HCC.data ,JM.cohort)

174
175 # check that Time >= Obstime

176 stopifnot(full.data.long$TimeEvent >= full.data.long$Obstime)

177
178
179
180
181 #################################################################

182 #################################################################

183 #----------------------PArt I - Cox model ---------------------

184
185
186 # Loading the cleaned dataset

187 df.long <- read_excel("Full_data_final.xlsx",sheet = 1,

188 col_types = c("text",rep("numeric" ,11)))

189 df.wide <- df.long[!duplicated(df.long$ID),]

190
191 ## a) ---------- Unadjusted Cox regression models ----

192
193 # Univariate Cox regression

194
195 covariates <- c("Sex","Age","ALD", "NAFLD", "HepB","HepC","Other")

196 univ.formulas <- sapply(covariates ,

197 function(x) as.formula(paste(’Surv(TimeEvent ,

198 Status)~’, x)))

199
200 univ.models <- lapply( univ.formulas ,

201 function(x){coxph(x, data = df.wide)})

202
203 # Extract summary for each univariate model

204 univ.results <-lapply(univ.models ,

205 function(x){

206 x <- summary(x)

207 p.value <-signif(x$wald["pvalue"],

208 digits =2)

209 wald.test <-signif(x$wald["test"],

210 digits =2)

211 beta <-signif(x$coef[1],

212 digits =2);#coeficient beta

213 HR <-signif(x$coef[2],

214 digits =2);#exp(beta)

215 HR.confint.lower <- signif(x$conf.int[,"lower .95"], 2)

216 HR.confint.upper <- signif(x$conf.int[,"upper .95"],2)

217 HR <- paste0(HR, " (",

218 HR.confint.lower , "-", HR.confint.upper , ")")

219 res <-c(beta , HR, wald.test , p.value)

220 names(res)<-c("beta", "HR (95% CI for HR)", "wald.test",

221 "p.value")

222 return(res)

223 #return(exp(cbind(coef(x),confint(x))))

224 })

225 res <- t(as.data.frame(univ.results , check.names = FALSE))

226 univ.res <- as.data.frame(res)

22



227 stargazer(univ.res)

228
229 ## b) ---------- Multivariate Cox regression model --------

230
231 res.cox <- coxph(Surv(TimeEvent , Status) ~ Sex+age.cat+ALD+NAFLD+HepB+HepC ,

232 data =df.wide)

233 sum.res.cox <- summary(res.cox)

234 stargazer(sum.res.cox$coefficients ,summary = FALSE)

235 cox.zph(res.cox , transform="km", global=TRUE)

236
237 # Diagnostic plots

238
239 par(mfrow=c(2, 2))

240 plot(cox.zph(res.cox))

241 ggforest(res.cox)

242 #Systematic departures from a horizontal line are indicative of

243 #non -proportional hazards

244
245
246 #Estimated Survival Function Distribution

247 ggsurvplot(survfit(res.cox), color = "#2E9FDF",

248 ggtheme = theme_minimal (),data = df.wide)

249
250 #assess the impact of the sex on the estimated survival probability

251
252 # Create the new data

253 aetiologies.df <- with(df.wide ,

254 data.frame(Sex = c(1, 1,1,1),

255 ALD = c(1,0,0,0),

256 NAFLD = c(0,1,0,0),

257 HepB = c(0,0,1,0),

258 Other = c(0,0,0,1)))

259
260 # predicted survival curves

261 fit <- survfit(res.cox , newdata = aetiologies.df)

262 ggsurv <- ggsurvplot(fit ,data = df.wide , conf.int = FALSE ,

263 legend.labs=c("ALD=1", "NAFLD=2",

264 "HepB=3","Other=4"),

265 ggtheme = theme_minimal ()) +

266 ggtitle("Pre -conditional disease impact")

267
268 #############################################################

269
270 #############################################################

271 #------------- Joint Modelling ------------------------------

272
273 #Load dataset

274 full.data.long <- read_excel("Full_data_final.xlsx",sheet = 1,

275 col_types = c("text",rep("numeric" ,11)))

276
277 ## sorting the data for the Joint Model

278 sortnames <- c("ID","TimeEvent")

279 DATA.long <- full.data.long[do.call("order", full.data.long[sortnames ]) ,]

280 DATA.wide <- DATA.long[!duplicated(DATA.long$ID),]

281
282 ##------------------Model I -------------

283 lmefit1 <- lme(AFP~ns(Obstime ,2)+Sex+Age ,random = ~ns(Obstime ,2)|ID ,

284 data = DATA.long)

285 coxfitA <- coxph(Surv(TimeEvent ,Status)~Sex+ALD+NAFLD+HepC+Other ,

286 data = DATA.wide ,x=TRUE)

287
288 jointFit1 <- jointModelBayes(lmefit1 ,coxfitA ,

289 timeVar = "Obstime",n.iter =10000 ,n.burnin =1000)

290
291 jointFitBayes <- jointModelBayes(lmeFit , coxFit ,

292 timeVar = "Obstime",baseHaz ="P-splines")

293
294 ##------------------Model II --------------

295
296 lmefit2 <- lme(AFP~ns(Obstime ,2)+Sex+Age+ALD+NAFLD+HepB+HepC ,

297 random = ~ns(Obstime ,2)|ID,

298 data = DATA.long)

299 coxfitB <- coxph(Surv(TimeEvent ,Status)~Sex+ALD+NAFLD+HepB+HepC ,

300 data = DATA.wide ,x=TRUE)

301
302 jointFit2 <- jointModelBayes(lmefit2 ,coxfitB ,timeVar = "Obstime")

23



303 summary(jointFit2)

304 stargazer(summary(jointFit2),summary = FALSE)

305 plot(jointFit2)

306
307 joinfit2 <- jointModel(lmefit2 ,coxfitB ,timeVar = "Obstime")

308 summary(jointfit2)

309 plot(jointfit2)

310
311 ##-------------------------------Model III -----------------

312 # No splines or polynomials

313 ctrl <- lmeControl(opt=’optim ’)

314 lmefit3 <- lme(AFP~Obstime+Sex+Age+ALD+NAFLD+HepB+HepC ,

315 random = ~Obstime|ID,

316 data = DATA.long)

317
318 coxfit3 <- coxph(Surv(TimeEvent ,Status)~Sex+ALD+NAFLD+HepC ,

319 data = DATA.wide ,x=TRUE)

320
321 jointFit3 <- jointModelBayes(lmefit3 ,coxfit3 ,timeVar="Obstime",

322 parameterization="both",derivForm=dform)

323
324 summary(jointFit3)

325
326 # Parametrization:

327 dForm <- list(fixed~0+dns(Obstime ,2),random=~0+dns(Obstime ,2),

328 indFixed =2:3, indRandom =2:3)

329
330 joinFit3.update <- update(jointFit1 ,param="td-extra",extraForm=dForm)

331
332 summary(jointFit3.update)

333 plot(jointFit3.update)

334
335
336 # add parametrization (slope + intercept)

337 dForm <- list(fixed=~0+dns(Obstime ,2),random=~0+dns(Obstime ,2),

338 indFixed =2:3, indRandom =2:3)

339
340 joinFit2.update <- update(jointFit2 ,param="td-both",extraForm=dForm)

341 summary(joinFit2.update)

342 plot(jointFit2)

343
344 # add parametrization random effect

345
346 joinFit2.update2 <-update(jointFit2 ,param="shared -RE")

347 summary(joinFit2.update2)

348 plot(joinFit2.update2)

349
350
351 ##--------------Model IV - Final Model ----------

352
353 ctrl <- lmeControl(opt=’optim ’)

354 lmefit4 <- lme(AFP~ns(Obstime ,3)+Sex+Age+ALD+NAFLD+HepB+HepC ,

355 random = list(ID=pdDiag(form=~ns(Obstime ,3))),

356 data = DATA.long)

357
358 coxfit4 <- coxph(Surv(TimeEvent ,Status)~Sex+Age+ALD+NAFLD+HepB+HepC ,

359 data = DATA.wide ,x=TRUE)

360
361 jointFit4 <- jointModelBayes(lmefit4 ,coxfit4 ,timeVar="Obstime")

362
363 summary(jointFit4)

364
365
366 #Add parameterization

367 dForm4 <- list(fixed=~0+dns(Obstime ,3),random=~0+dns(Obstime ,3),

368 indFixed =2:4, indRandom =2:4)

369
370 joinFit4.update <- update(jointFit4 ,param="td-both",extraForm=dForm4)

371
372 sum.joinFit4 <- summary(joinFit4.update)

373
374 stargazer(sum.joinFit4$‘CoefTable -Long ‘)

375 stargazer(sum.joinFit4$‘CoefTable -Event ‘)

376
377 # Diagnostic plot

378 density.variables <- as.data.frame(joinFit3.update$mcmc$gammas)
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379 density.variables$iterations <- 1:2000

380
381 #density plots

382
383 a <- ggplot(density.variables , aes(x=ALD)) +

384 geom_density(fill="lightblue")

385
386 b <- ggplot(density.variables , aes(x=NAFLD)) +

387
388 geom_density(fill="lightblue")

389 c <- ggplot(density.variables , aes(x=HepB)) +

390
391 geom_density(fill="lightblue")

392 d <- ggplot(density.variables , aes(x=HepC)) +

393
394 geom_density(fill="lightblue")

395
396 #traceplots

397 aa <- ggplot(data=density.variables ,aes(x=iterations ,y=ALD))+geom_line()

398 bb <- ggplot(data=density.variables ,aes(x=iterations ,y=NAFLD))+geom_line()

399 cc <- ggplot(data=density.variables ,aes(x=iterations ,y=HepB))+geom_line()

400 dd <- ggplot(data=density.variables ,aes(x=iterations ,y=HepC))+geom_line()

401
402
403 # Subplots

404 grid.arrange(a,aa ,b,bb ,c,cc,d,dd,top="Survival sub -model coefficients",

405 left="density plots", right="traceplots",ncol =2)

406
407
408 # Survival probability for patient L170

409 data <- DATA.long[DATA.long$ID=="L170",]

410
411 # PLot the data

412 sfit3 <- survfitJM(joinFit4.update ,newdata=data[1,],idVar = "ID")

413 sfit4 <- survfitJM(joinFit4.update ,newdata=data [1:3,], idVar = "ID")

414 sfit5 <- survfitJM(joinFit4.update ,newdata=data [1: nrow(data) ,],idVar = "ID")

415
416 par(mfrow=c(1,3))

417 plotfit3 <- plot(sfit3 ,estimator="mean",include.y=TRUE ,

418 conf.int=0.95, fill.area=TRUE ,col.area="lightblue",

419 main="patient L170")

420 plotfit4 <- plot(sfit4 ,estimator="mean",include.y=TRUE ,

421 conf.int=0.95, fill.area=TRUE ,col.area="lightblue",

422 main="patient L170")

423 plotfit5 <- plot(sfit5 ,estimator="mean",include.y=TRUE ,

424 conf.int=0.95, fill.area=TRUE ,col.area="lightblue",

425 main="patient L170")
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